American Journal of Pure and Applied Biosciences, 6(1), 1-17, 2024

Publisher homepage: www.universepg.com, ISSN: 2663-6913 (Online) & 2663-6905 (Print)

https://doi.org/10.34104/ajpab.024.01017

American Journal of Pure and Applied Biosciences Journal homepage: www.universepg.com/journal/ajpab

Investigating the Impact of ENPP1 Gene's K121Q (RS1044498) Polymorphism in Type 2 Diabetes via an Updated Meta-Analysis

Farzana Akter¹, Imranur Rahman¹, Dilara Akter Supti², Md. Abdul Kader¹, Md Adnan Munim¹, Rabia Jahan Tarin¹, Sumaiya Afroz¹, Mahafujul Islam Quadery Tonmoy¹, Mohammad Rahanur Alam², and Md. Anwar Hossain¹*

¹Dept. of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Bangladesh; and ²Dept. of Food Technology and Nutrition Science, Noakhali Science and Technology University, Bangladesh.

*Correspondence: <u>anwar.bge@nstu.edu.bd</u> (Dr. Md. Anwar Hossain, Associate Professor, Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali-3814, Bangladesh).

ABSTRACT

Type 2 Diabetes Mellitus (T2DM) occurs due to a complex relationship of genetic, environmental, and physiological factors, encompassing insufficient pancreatic insulin synthesis, peripheral insulin resistance, and diverse molecular pathways. The transmembrane glycoprotein ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) plays a role in insulin regulation, with the K121Q (rs1044498) variant on the ENPP1 gene being a subject of extensive study due to its potential association with T2DM. To comprehensively evaluate this relationship, a meta-analysis was conducted, pooling data from 48 studies retrieved from databases such as PubMed, Google Scholar, Science Direct, and Medline. The analysis, performed using Review Manager Version 5.4.1 and Stata version 14.1, included a total of 24,979 T2DM cases and 33,005 controls. Employing fixed-effects or random-effects models, the combined Odds Ratio (OR) and 95% Confidence Intervals (CIs) were calculated to quantify the connection's magnitude. In the overall population, all genotypic models revealed a statistically noteworthy connotation between ENPP1 and T2DM (P < 0.05). Notably, the homozygous model exhibited an OR of 1.53 (95% CI = 1.23-1.90, P = 0.0001), while the heterozygous, dominant, recessive, and allelic models showed ORs of 1.22 (95% CI = 1.08-1.37, P = 0.001), 1.15 (95% CI = 1.11-1.41, P = 0.0003), 1.38 (95% CI = 1.17-1.64, P = 0.0002), and 1.22 (95% CI = 1.10-1.36, P = 0.0003, correspondingly. Subgroup analysis by population indicated no significant correlation between the K121Q polymorphism and T2DM in the African population, while a noteworthy association was detected in both Asian and Caucasian populations, with the heterozygous model lacking significance in the latter. Despite no evidence of publication bias, a notable amount of residual heterogeneity among studies was identified. Sensitivity analysis established the steadiness and dependability of the meta-analysis findings, underscoring the complex nature of the ENPP1 gene's involvement in T2DM across diverse populations.

Keywords: T2DM, ENPP1 gene, rs1044498, K121Q, Meta-analysis, STATA, and Review manager.

INTRODUCTION:

Diabetes, also referred to as diabetes mellitus, is an enduring health condition that has had a profound and UniversePG I <u>www.universepg.com</u>

far-reaching effect on the lives of millions of individuals globally. The disease is a collection of disorders that share hyperglycemia as a characteristic. Hyperglycemia is caused by low insulin secretion and action, or both (Maraschin, 2013). Based on the figures on diabetes mellitus in the year 2021 from International Diabetes Federation, approximately 537 million individuals, aged between 20 and 79 years, are currently grappling with the disease, translating to one in every 10 people affected by this health condition (Atlas). This figure might reach 643 million by 2030 and 783 million by 2045, according to predictions (Atlas). In addition, diabetes turned out to be the cause of death for 6.7 million people in 2021, equivalent to one death every five seconds (Atlas). If not managed properly, diabetes can lead to severe complications and premature deaths (Rahman et al., 2021). Type 2 diabetes mellitus (T2DM) is markedly further prevalent than type 1 diabetes mellitus (T1DM) or gestational diabetes, accounting for more than 90% of all cases. One of the main characteristics of type 2 diabetes (T2DM) is impaired metabolism of proteins, fats, and carbohydrates as a result of either insulin resistance or inadequate insulin secretion, or both.

In recent decades, our comprehension of the onset and advancement of Type 2 Diabetes Mellitus (T2DM) has undergone rapid expansion. The principal factor driving the disease is the gradual deterioration of insulin secretion by pancreatic β cells (DeFronzo *et al.*, 2015). Type 2 diabetes (T2DM) has its causes rooted in both hereditary and environmental factors. Obesity plays a vital role in T2DM (L Tuck & B Corry, 2010; Habib F., 2022). The Pathophysiological alterations include beta-cell dysfunction, insulin resistance, and chronic inflammation, all of which impede the regulation of blood sugar and hasten onset of micro- and macrovascular problems (DeFronzo, 2009).

Evidence suggests that IR is inherited and is caused by a number of intrinsic factors. Insulin resistance is capable of being identified in patients containing a mutation in the insulin receptor gene. It was recently identified that a glycoprotein with the name ectoenzyme nucleotide pyrophosphate phosphodiesterase 1 (ENPP1) (ENPP1; likewise referred to as plasma cell glycoprotein 1, PC-1) is strongly expressed in the muscle, skin, and fat of people who have type 2 diabetes. As a consequence of this, insulin signal transduction is disrupted, and insulin resistance is brought about (Maddux & Goldfine, 2000). As a direct conse-UniversePG I www.universepg.com quence of this, type 2 diabetes begins to develop in an organized manner.

Serosa and endoplasmic reticulum membranes contain type II transmembrane glycoprotein ENPP1. The following are possible mechanisms for the ENPP1 1210 allele's induction of IR: (i) changes to the insulin receptor's tyrosine kinase active area affect the serine and threonine autophosphorylation sites, preventing the downstream cascade from receiving insulin signals. (Costanzo et al., 2001); (ii) inhibiting the activity of tyrosine kinase prevents post-receptor signal transduction (Kumakura et al., 1998) as well as (iii) elevated serum insulin levels subsequently induce ENPP1 expression via a system for sending signals quickly and accurately (Menzaghi et al., 2003). The ENPP1 gene, which spans 80 kilobases and is located on chromosome 6q22-23, has 24 introns and 25 exons. The missense mutation at position 121 of the ENPP1 gene (rs1044498) results in a polymorphism known as K121Q. The change in the 121st codon from adenine (A base) to cytosine (C base) results in the matching amino acid sequence being altered to have glutamine (O) instead of lysine (K) (Grarup et al., 2006). It has been reported that the ENPP1 K121Q (rs1044498) polymorphism has been linked to type 2 diabetes in many countries (Badaruddoza et al., 2015; Hsiao & Lin, 2016; Marchenko et al., 2018; Mtiraoui et al., 2012; Yako et al., 2015). In this analysis, we attempted to get a more precise understanding of the link between ENPP1 (rs1044498) and type 2 diabetes by doing an updated meta-analysis study utilizing the earlier studies that had been done on a range of different ethnic groups. This study through metaanalysis, will help us to summarize the overall association of the SNP with type 2 diabetes. Moreover, to understand the unknown effect size, we can also be able to compare and contrast the findings of several studies, identify patterns among studies, and also find sources of disagreement among those results.

MATERIALS AND METHODS:

Literature Search Strategy

A thorough search of Google Scholar, PubMed, Science Direct, and Medline was conducted up until the end of 2022 to retrieve the literature on the relationship between ENPP1 polymorphisms and T2D susceptibility. The investigation was conducted employing the following keywords: (K121Q OR rs1044498 OR polymorphism) AND (ENPP1 OR "PC-1" OR "plasma cell membrane glycoprotein 1" OR "ectonucleotide pyrophosphatase/phosphodies-terase 1") AND (Diabetes OR T2D OR T2DM OR "type 2 diabetes mellitus"). The included research's cited works and other pertinent papers were also read. Alongside we retrieved multiple studies from the previous metaanalysis research.

Inclusion and exclusion criteria of study

The subsequent inclusion measures were used to select studies for inclusion in this meta-analysis: (1) casecontrol studies; (2) consideration of ENPP1 polymorphisms and type 2 diabetes susceptibility; (3) allele and genotype counts in great detail between case and controls; and (4) Value of Hardy-Weinberg Equilibrium (HWE) conforming controls. We technically omitted studies which were basically- i) case studies or reviews that did not include any controls or differentiate case and control data; ii) reports with no available data; and iii) reports that are already on file.

Data extraction

Data extraction was done after the literatures were screened and the inclusion and exclusion criteria were followed. Specifically, the following data were retrieved for each study which included: the list of authors, the year the study was published, the ethnicity of the participants, the sample size, the genotype of each gene variant, and the HWE.

Statistical analysis

Using odds ratios (ORs) and 95% confidence intervals (CIs), the degree of the relationship between ENPP1 rs1044498 polymorphisms and Type 2 Diabetes (T2D) was evaluated. The pooled ORs for ENPP1 rs1044498 (K121Q) K > Q were determined using five distinct genetic models: homozygous (QQ vs. KK), hetero-zygous (KQ vs. KK), dominant (KQ + QQ vs. KK),

recessive (QQ vs. KK + KQ), and allelic (Q vs. K). Heterogeneity was evaluated using I2, with a preference for I2 values exceeding 50% to indicate significant heterogeneity. In instances where I2 exceeded 50%, a random-effects model was the utilized. (DerSimonian & Laird, 1986), and when homogeneity was present ($I^2 \le 50\%$), we used a fixed-effects model (Mantel & Haenszel, 1959). In addition, subgroup analyses based on ethnicity were carried out to calculate ORs that were specific to each ethnic group. Finally, Begg-Mazumdar's test, Egger's test, and funnel plots were used to evaluate publication bias (Begg & Mazumdar, 1994; Egger, Smith, Schneider, & Minder, 1997), with a P-value for statistical significance of less than 0.05. For each study, to assess the Hardy-Weinberg equilibrium (HWE), a compareson was made between the expected and the observed genotype frequencies of the control group. Using a two-tailed P-value, statistical analyses were done in Stata (StataCorp., College Station, TX, USA) version 14.2, and Review Manager (5.4.1). The cutoff for significance was set at P<0.05.

RESULTS:

Features of the study

A total of forty-four articles were selected after the inclusion and exclusion criteria were applied. The selected articles contained a total of 56 studies. 8 of those studies did not fulfill the HWE value criteria (Abate *et al.*, 2005; Weedon *et al.*, 2006; Willer *et al.*, 2007; Bhatti *et al.*, 2010; Saberi *et al.*, 2011; Barna *et al.*, 2018; Golbon *et al.*, 2018; Gohari-Lasaki *et al.*, 2020) (P<0.05). Therefore, they were excluded from the finalized meta-analysis. The final meta-analysis contained 48 studies from 37 articles comprising 24979 cases and 33005 controls. For the meta-analysis, the features of each study are presented in **Table 2** and **Fig. 1** shows a selection process flowchart.

Table 1: Genotypic and descriptive details according to the chosen study for rs1044498 meta-analysis.

	Year of		Ethnicity		Geno Size of Sample			Genotype (case and control)						
First Author	Publication	Country	Etimetty	typing Method		typing Method Case Control Case				0	HWE			
	i ubication				Case	Control	KK	KQ	QQ	KK	KQ	QQ		
Pizzuti (Pizzuti <i>et al.</i> , 1999)	1999	Italy	Caucasian	PCR-SSCP	132	121	81	47	4	80	39	2	0.2574	
Gu (Gu et al., 2000)	2000	Finland and Sweden	Caucasian	PCR-RFLP	392	147	304	80	8	110	36	1	0.286	
Du (Du XH, 2002)	2002	China	Asian	PCR-RFLP	217	54	146	65	6	40	12	2	0.3796	

2011)								1					
Bhatti (Bhatti <i>et al.</i> , 2010) Saberi (Saberi <i>et al.</i> ,	2010 2010	India Iran	Asian Asian	PCR-RFLP PCR-RFLP	328 155	326 377	199 109	129 45	0	195 255	131 119	0	0.0061
Wang (M. Wang et al., 2010)	2010	China	Asian	PCR-RFLP	539	404	429	106	4	340	61	3	0.8844
Ezzidi (Ezzidi et al., 2009)	2009	Tunisia	African	TaqMan SNP Genotyping Assays	809	499	402	311	96	228	205	66	0.0685
Vasudevan (Vasudevan et al., 2009)	2009	Malaysia	Asian	PCR	50	60	39	10	1	44	15	1	0.8284
Achhab (El Achhab et al., 2009)	2009	Morocco	African	PCR	503	412	194	240	69	168	183	61	0.336
C.B.leitao (2)	2008	Brazil	African	PCR-RFLP	197	91	51	95	51	20	49	22	0.4601
C.B.leitao (Leitão <i>et al.</i> , 2008) (1)	2008	Brazil	Caucasian	PCR-RFLP	830	149	520	276	34	91	53	5	0.414
Cauchi (Cauchi <i>et al.</i> , 2008)	2008	France-Swiss	Caucasian	Genotyping Assays	2783	4326	1979	722		3144	1071	111	0.0854
Seo (Seo <i>et al.</i> , 2008)	2008	Korea	Asian	PCR-RFLP	195	1750	164	28	3 82	1433	302	15	0.8354
Meyre (Meyre et al., 2007)	2007	French	Caucasian	PCR-RFLP	316	2005	223	79	14	1438	511	56	0.1950
Willer (Willer et al., 2007)	2007	Finland	Caucasian	MS PCR-RFLP	1155	971	853	268	34	755	193	23	0.013
Lyon (6)	2006	U.S.A	Caucasian	MS MALDI-TOF	1216	1204	907	288	21	853	319	32	0.739
Lyon (5)	2006	Sweden	Caucasian		501	496	360	127	14	356	126	14	0.483
Lyon (4)	2006	vian trios Scandinavian	Caucasian	MS MALDI-TOF	473	465	353	111	9	355	103	7	0.879
Lyon (3)	2006	vian sib pairs Scandina	Caucasian		310	448	235	70	5	332	109	7	0.565
2006) (1) Lyon (2)	2006	Scandina	Caucasian		589	501	409	166	14	381	115	5	0.252
Berthold <i>et al.</i> , 2006) Lyon (Lyon <i>et al.</i> ,	2006	Poland	Caucasian		1002	1000	747	240	15	716	263	21	0.580
<i>et al.</i> , 2006) Gouni-Berthold (Gouni-	2006	Germany	Caucasian	PCR-RFLP	402	432	292	102	8	335	91	6	0.949
<i>et al.</i> , 2006) Keshavarz (Keshavarz	2006	Japan	Asian	PCR-RFLP	907	874	727	167	13	703	160	11	0.580
et al., 2004) Weedon (Weedon	2006	England	Caucasian	PCR	2287	3846	1691	554	42	2842	949	55	0.015
2006) Kubaszek (Kubaszek	2006	Finland	Caucasian	MS PCR	97	392	70	25	2	302	83	7	0.641
<i>et al.</i> , 2006) Grarup (Grarup <i>et al.</i> ,	2006	Denmark	Caucasian		1386	4770	1037	316	33	3577	1097	96	0.269
Bochenski (Bochenski	2000	Poland	Caucasian	PCR-RFLP	426	370	328	20 91	7	286	77	7	0.304
Chen (Chen <i>et al.</i> , 2006) Lu (Lu, 2006)	2006 2006	China China	Asian Asian	PCR-RFLP PCR-RFLP	1862 119	844 422	1515 92	333 26	14	681 361	155 59	8	0.802
Bacci (2)	2005	America	Caucasian	PCR-RFLP	408	286 844	278	115 333	15 14	203 681	74 155	9 8	0.482
Bacci (Bacci <i>et al.</i> , 2005) (1)	2005	Italy	Caucasian	PCR-RFLP	561	352	393	152	16	260	84	8	0.694
Meyre (2)	2005	French	Caucasian	PCR-RFLP	747	548	525	197	25	405	136	7	0.237
Meyre (Meyre <i>et al.</i> , 2005) (1)	2005	Austria	Caucasian	PCR-RFLP	465	732	336	114	15	570	155	7	0.318
Abate (3)	2005	India	Asian	PCR-RFLP	223	456	169	47	7	140	282	34	0.102
Abate (Abate <i>et al.</i> , 2005) (1) Abate (2)	2005	U.S.A	Caucasian Asian	PCR-RFLP	141	962	46	72	3	850	175	6	0.978
Hamaguchi (Hama- guchi <i>et al.</i> , 2004) Abate (Abate <i>et al.</i> ,	2003	Dominican Republic America	Caucasian	PCR-RFLP PCR-RFLP	358 141	397 717	66 86	178 44	114 11	97 530	187 173	113	0.261

UniversePG | <u>www.universepg.com</u>

									1	1	1		
Shi (Shi et al., 2011)	2011	China	Asian	PCR-RFLP	639	885	508	123	8	701	178	6	0.1409
Zhao (Zhao et al., 2011)	2011	China	Asian	PCR-RFLP	1879	2014	1463	393	23	1610	385	19	0.4465
Wang (CH. Wang	2012	China	Asian	PCR-RFLP	416	188	256	129	31	149	34	5	0.0869
et al., 2012)													
Tripathi (Tripathi et al.,	2013	India	Asian	PCR-RFLP	190	210	121	66	3	146	62	2	0.097
2013)													
Yako (Yako et al.,	2015	South Africa	African	TaqMan SNP	152	328	41	73	38	81	175	72	0.219
2015)				Genotyping									
				Assays									
Badaruddoza	2015	India	Asian	PCR-RFLP	239	211	148	88	3	150	57	4	0.5951
(Badaruddoza et al.,													
2015)													
Hsiao (Hsiao & Lin,	2016	Taiwan	Asian	TaqMan SNP	553	960	368	153	32	754	197	9	0.3242
2016)				Genotyping									
				Assays							_		
Paramasivam	2016	Malaysia	Asian	PCR-RFLP	40	41	18	20	2	22	16	3	0.969
(Darishiani, 2016) (1)											_		
Paramasivam (2)	2016	India	Asian	PCR-RFLP	40	40	13	23	4	17	21	2	0.1606
Paramasivam (3)	2016	China	Asian	PCR-RFLP	40	40	17	20	3	16	22	2	0.1088
Mohamad (Mohamad	2017	Egypt	Asian	PCR-RFLP	212	170	86	96	30	92	63	15	0.3787
et al., 2018)													
Sumi (Sumi et al., 2017)	2017	India	Asian	PCR-RFLP	160	271	16	104	40	200	63	8	0.2739
Neamati (Neamati	2017	Iran	Asian	PCR-RFLP	180	310	123	50	7	207	92	11	0.8442
et al., 2017)													
Barna (Barna et al., 2018)	2018	India	Asian	PCR-RFLP	250	250	156	69	25	178	59	13	0.0096
Golbon (Golbon et al.,	2018	Iran	Asian	PCR-RFLP	240	240	60	100	80	86	83	71	0
2018)													
Sharafshah (Sharafshah	2018	Iran	Asian	TaqMan SNP	533	437	301	215	17	296	121	20	0.0998
et al., 2018)				Genotyping									
				Assays									
Albegali (Albegali et al.,	2019	Pakistan	Asian	PCR-RFLP	161	161	153	7	1	130	29	2	0.7912
2019)													
Gohari-Lasaki (Gohari-	2020	Iran	Asian	TaqMan assay	290	212	161	117	12	124	83	5	0.037
Lasaki et al., 2020)													

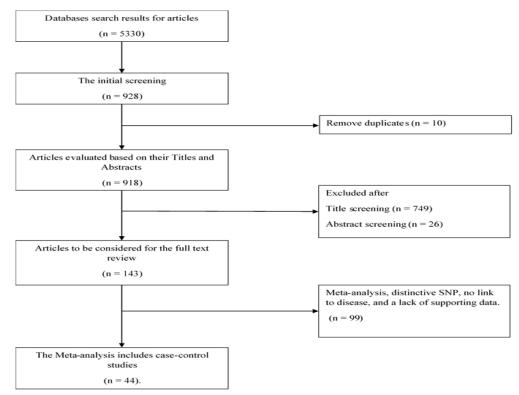


Fig. 1: Schematic representation of the literature review and research selection processes.

Meta-analysis

 Table 2 and Fig. 2 illustrated that K>Q polymorphism
 in ENPP1 (K1210) is related with an enhanced risk of developing type 2 diabetes. Overall, population susceptibility to type 2 diabetes was strongly correlated with the polymorphism. Each genetic variation was linked to an enhanced chance of evolving into type 2 diabetes, and the associations were statistically significant. (QQ vs. KK: OR = 1.53, 95% CI = 1.23-1.90, P = 0.0001; KQ vs. KK: OR = 1.22, 95% CI = 1.08-1.37, P = 0.001; KQ + QQ vs. KK: OR = 1.15, 95% CI = 1.11-1.41, P = 0.0003; QQ vs. KK + KQ: OR = 1.38, 95% CI = 1.17-1.64, P = 0.0002; and Q vs. K; OR = 1.22, 95% CI = 1.10-1.36, P = 0.0003) (P<0.05). In the African population, the ENPP1 rs1044498 K>Q polymorphism was not shown to be related with an enhanced risk of evolving into type 2 diabetes, according to the subgroup analysis (P>0.05), but there was a link corresponding to the Asian population in all genetic models (Table 2) and the Caucasian population for four genetic models (Homozygous, Dominant, Recessive and Allelic model) where P value was less than 0.05. However, there was no evidence of any associations between the heterozygous model and type 2 diabetes in the Caucasian group (P>0.05). Egger's test and Begg-Mazumdar's test below (Table 3), as well as the funnel plot (Fig. 3), were utilized in this study to investigate whether or not each genetic model had been affected by publication bias. However, these analyses and figures did not reveal any signs of publishing bias. A leave-one-out investigation was completed to determine the impact of each individual study on the pooled odds ratios (Fig. 4). The results showed that the pooled effect did not change much when a study was taken out of a meta-analysis and the remaining studies were used instead. This demonstrated the stability and dependability of the meta-analysis's findings.

Table 2: Meta-analysis of the association between	n rs1044498 and T2DM.
---	-----------------------

Genetic model	I	Evaluation of associations								
Genetic model	Odds Ratio (OR)	95% Confidence Interval (CI)	P value	Model	$I^{2}(\%)$	P value				
Homozygous		•								
Overall	1.53	1.23-1.90	0.0001	Random	69%	<0.00001				
Asian	1.93	1.16-3.24	0.01	Random	78%	< 0.00001				
Caucasian	1.29	1.12-1.49	0.0004	Fixed	38%	0.04				
African	0.92	0.73-1.15	0.45	Fixed	0%	0.88				
Heterozygous		•								
Overall	1.22	1.08-1.37	0.001	Random	85%	< 0.00001				
Asian	1.49	1.13-1.96	0.004	Random	92%	< 0.00001				
Caucasian	1.04	0.99-1.10	0.12	Fixed	22%	0.17				
African	0.93	0.79-1.10	0.40	Fixed	0%	0.39				
Dominant										
Overall	1.25	1.11-1.41	0.0003	Random	87%	< 0.00001				
Asian	1.53	1.15-2.02	0.003	Random	93%	< 0.00001				
Caucasian	1.06	1.01-1.12	0.02	Fixed	44%	0.01				
African	0.93	0.80-1.08	0.34	Fixed	0%	0.51				
Recessive		•								
Overall	1.38	1.17-1.64	0.0002	Random	53%	<0.0001				
Asian	1.64	1.11-2.42	0.01	Random	62%	< 0.0001				
Caucasian	1.24	1.08-1.42	0.002	Fixed	29%	0.10				
African	0.97	0.79-1.19	0.80	Fixed	0%	0.72				
Allelic										
Overall	1.22	1.10-1.36	0.0003	Random	88%	< 0.00001				
Asian	1.40	1.09-1.79	0.008	Random	93%	< 0.00001				
Caucasian	1.10	1.02-1.18	0.01	Random	55%	0.001				
African	0.96	0.86-1.07	0.42	Fixed	0%	0.68				

Study or Subgroup	Cas Events		Cont Events		the indext	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
							M-H, Random, 95% CI
Abate (1) 2005	11	97	14	544	2.4%	4.84 [2.13, 11.02]	
Abate (2) 2005	3	49	6	856	1.4%	9.24 [2.24, 38.12]	
Achhab 2009	69	263	61	229	3.3%	0.98 [0.66, 1.46]	
Albegali 2019	1	154	2	132	0.7%	0.42 [0.04, 4.74]	
Bacci (1) 2005	16	409	8	268	2.4%	1.32 [0.56, 3.14]	
Bacci (2) 2005	15	293	9	212	2.4%	1.22 [0.52, 2.84]	
Badaruddoza 2015	3	151	4	154	1.3%	0.76 [0.17, 3.45]	
Barroso 2003	9	384	8	388	2.2%	1.14 [0.44, 2.99]	
Bochenski 2006	7	335	7	293	2.0%	0.87 [0.30, 2.52]	
C.B.leitao (1) 2008	34	554	5	96	2.2%	1.19 [0.45, 3.12]	
C.B.leitao (2) 2008	51	102	22	42	2.6%	0.91 [0.44, 1.87]	
Cauchi 2008	82	2061	111	3255	3.5%	1.17 [0.88, 1.57]	
Chen 2006	14	1529	8	689	2.3%	0.79 [0.33, 1.88]	
Du 2002	6	152	2	42	1.2%	0.82 [0.16, 4.23]	
Ezzidi 2009	96	498	66	294	3.4%	0.82 [0.58, 1.17]	-+-
Gouni-Berthold 2006	8	300	6	341	2.0%	1.53 [0.52, 4.46]	
Grarup 2006	33	1070	96	3673	3.3%	1.19 (0.79, 1.77)	
Gu 2000	8	312	1	111	0.8%	2.89 [0.36, 23.41]	
Hamaguchi 2003	114	180	113	210	3.3%	1.48 [0.99, 2.23]	
Hsiao 2016	32	400	9	763	2.6%	7.29 (3.44, 15.42)	
Keshavarz 2006	13	740	11	714	2.5%	1.14 [0.51, 2.57]	
Kubaszek 2006	2	72	7	309	1.2%	1.23 [0.25, 6.06]	
Lu 2006	1	93	2	363	0.7%	1.96 [0.18, 21.87]	
Lyon (1) 2006	15	762	21	737	2.8%	0.68 [0.35, 1.34]	
Lyon (2) 2006	14	423	5	386	2.0%	2.61 [0.93, 7.31]	
Lyon (3) 2006	5	240	7	339	1.8%	1.01 [0.32, 3.22]	
Lyon (4) 2006	9	362	7	362	2.1%	1.29 [0.48, 3.51]	
Lyon (5) 2006	14	374	14	370	2.6%	0.99 [0.46, 2.10]	
Lyon (6) 2006	21	928	32	885	3.0%	0.62 [0.35, 1.08]	
Meyre (1) 2005	15	351	7	577	2.3%	3.64 [1.47, 9.01]	
	25	550	2	412	2.3%		
Meyre (2) 2005 Meyre 2007	20 14	237	56	1494	2.4%	2.76 [1.18, 6.43]	
		237				1.61 [0.88, 2.94]	
Mohamad 2017	30		15	107	2.7%	2.14 [1.08, 4.25]	
Neamati 2017	7	130	11	218	2.1%	1.07 [0.40, 2.84]	
Paramasivam (1) 2016	2	20	3	25	1.0%	0.81 [0.12, 5.42]	
Paramasivam (2) 2016	4	17	2	19	1.0%	2.62 [0.41, 16.54]	
Paramasivam (3) 2016	3	20	2	18	1.0%	1.41 [0.21, 9.58]	
Pizzuti 1999	4	85	2	82	1.1%	1.98 [0.35, 11.09]	
Sec 2008	3	167	15	1448	1.7%	1.75 [0.50, 6.10]	
Sharafshah 2018	17	318	20	316	2.8%	0.84 [0.43, 1.63]	
Shi 2011	8	516	6	707	2.0%	1.84 [0.63, 5.34]	
Sumi 2017	40	56	8	208	2.3%	62.50 [25.06, 155.90]	
Tripathi 2013	з	124	2	148	1.0%	1.81 [0.30, 11.01]	
Vasudevan 2009	1	40	1	45	0.5%	1.13 [0.07, 18.65]	
Wang 2010	4	433	3	343	1.3%	1.06 [0.23, 4.75]	
Wang 2012	31	287	5	154	2.2%	3.61 [1.37, 9.48]	
Yako 2015	38	79	72	153	3.0%	1.04 [0.61, 1.80]	
Zhao 2011	23	1486	19	1629	2.9%	1.33 [0.72, 2.46]	
Total (95% CI)		18319		25160	100.0%	1.53 [1.23, 1.90]	◆
Total events	978		920				
Heterogeneity: Tau [*] = 0.3	$2 \cdot C hill = 4$	52.20 c	r - 47 (P	< 0.000	11118 - 61	3.945	0.01 0.1 1 10 1

Fig. 2: Forest	plot of type 2 diabetes	and rs1044498 polymorp	hism for homozygous mode	l (OO vs KK).
O				

Table 3: Evolution of Publication Bias.

Genetic model	Evaluation of Publication Bias (P value)								
Genetic model	Begg-Mazumdar's test	Egger's test							
Homozygous	0.081	0.079							
Heterozygous	0.062	0.089							
Dominant	0.057	0.069							
Recessive	0.182	0.069							
Allelic	0.053	0.131							

	Cas		Cont			Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events			M-H, Random, 95% Cl	M-H, Random, 95% Cl
Abate (1) 2005	44	130	173	703	2.1%	1.57 [1.05, 2.34]	-
Abate (2) 2005	72	118	106	956	2.0%	12.55 [8.23, 19.13]	
Achhab 2009	240	434	183	351	2.4%	1.14 [0.86, 1.51]	
Albegali 2019	7	160	29	159	1.1%	0.21 [0.09, 0.48]	
Bacci (1) 2005	152	545	84	344	2.3%	1.20 [0.88, 1.63]	
Bacci (2) 2005	115	393	74	277	2.2%	1.13 [0.80, 1.60]	
Badaruddoza 2015	88	236	57	207	2.1%	1.56 [1.05, 2.34]	
Barroso 2003	107	482	121	501	2.3%	0.90 [0.67, 1.21]	
Bochenski 2006	91	419	77	363	2.2%	1.03 [0.73, 1.45]	
C.B.leitao (1) 2008	276	796	63	144	2.2%	0.91 [0.63, 1.32]	
C.B.leitao (2) 2008	95	146	49	69	1.6%	0.76 [0.41, 1.42]	
Cauchi 2008	722	2701	1071	4215	2.7%	1.07 [0.96, 1.20]	
Chen 2006	333	1848	155	836	2.5%	0.97 [0.78, 1.19]	
Du 2002	65	211	12	52	1.4%	1.48 [0.73, 3.01]	
Ezzidi 2009	311	713	205	433	2.5%	0.86 [0.68, 1.09]	
Gouni-Berthold 2006	102	394	91	426	2.3%	1.29 [0.93, 1.78]	
Grarup 2006	316	1353	1097	4674	2.6%	0.99 [0.86, 1.15]	+
3u 2000	80	384	36	146	2.0%	0.80 [0.51, 1.26]	
Hamaguchi 2003	178	244	187	284	2.2%	1.40 [0.96, 2.03]	
Hsiao 2016	153	521	197	951	2.5%	1.59 [1.25, 2.03]	
Keshavarz 2006	167	894	160	863	2.5%	1.01 [0.79, 1.28]	
Kubaszek 2006	26	96	83	386	1.8%	1.30 [0.77, 2.18]	
Lu 2006	26	118	59	420	1.8%	1.73 [1.03, 2.89]	
Lyon (1) 2006	240	987	263	979	2.5%	0.87 [0.71, 1.07]	
Lyon (2) 2006	166	575	115	496	2.4%	1.34 [1.02, 1.77]	
Lyon (3) 2006	70	305	109	441	2.2%	0.91 [0.64, 1.28]	
Lyon (4) 2006	111	464	103	458	2.3%	1.08 [0.80, 1.47]	
Lyon (5) 2006	127	487	126	482	2.4%	1.00 [0.75, 1.33]	
Lyon (6) 2006	288	1195	319	1172	2.6%	0.85 [0.71, 1.02]	
Meyre (1) 2005	114	450	155	725	2.4%	1.25 [0.95, 1.65]	
Meyre (2) 2005	197	722	136	541	2.4%	1.12 [0.87, 1.44]	
Meyre 2007	79	302	511	1949	2.4%	1.00 [0.76, 1.31]	
Nohamad 2017	96	182	63	155	2.0%	1.63 [1.06, 2.51]	
Neamati 2017	50	173	92	299	2.1%	0.91 [0.61, 1.38]	
aramasivam (1) 2016	20	38	16	38	1.0%	1.53 [0.62, 3.78]	
Paramasivam (2) 2016	23	36	21	38	1.0%	1.43 [0.56, 3.64]	
Paramasivam (3) 2016	20	37	22	38	1.0%	0.86 [0.34, 2.13]	
Pizzuti 1999	47	128	39	119	1.8%	1.19 [0.70, 2.01]	
3eo 2008	28	192	302	1735	2.0%	0.81 [0.53, 1.23]	
Sharafshah 2018	216	516	121	417	2.4%	1.75 [1.33, 2.30]	
3hi 2011	123	631	178	879	2.4%	0.95 [0.74, 1.23]	
Burni 2017	104	120	63	263	1.6%	20.63 [11.36, 37.61]	
Fripathi 2013	66	187	62	208	2.0%	1.28 [0.84, 1.96]	
asudevan 2009	10	49	15	59	1.0%	0.75 [0.30, 1.87]	
Wang 2010	106	535	61	401	2.2%	1.38 [0.97, 1.95]	
Wang 2012	129	385	34	183	2.0%	2.21 [1.44, 3.39]	
Yako 2015	73	114	175	256	1.9%	0.82 [0.52, 1.31]	
Zhao 2011	393	1856	385	1995	2.6%	1.12 [0.96, 1.31]	-
Fotal (95% CI)		24001		32085	100.0%	1.22 [1.08, 1.37]	•
Total events	6660		7845				
leterogeneity: Tau [*] = 0.1		21.64. c		< 0.0000	01): I ≊ = 88	5%	
est for overall effect: $Z =$							0.05 0.2 i 5 20 Case Control

Fig. 3: Forest plot of type 2 diabetes and rs1044498 polymorphism for heterozygous model (KQ vs KK).

	Cas	e	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events		Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Abate (1) 2005	55	141	187	717	2.1%	1.81 [1.24, 2.64]	
Abate (2) 2005	75	121	112	962	2.0%	12.37 [8.16, 18.77]	
Achhab 2009	309	503	244	412	2.4%	1.10 [0.84, 1.43]	+
Albegali 2019	8	161	31	161	1.2%	0.22 [0.10, 0.49]	
Bacci (1) 2005	168	561	92	352	2.3%	1.21 [0.90, 1.63]	
Bacci (2) 2005	130	408	83	286	2.2%	1.14 [0.82, 1.59]	
Badaruddoza 2015	91	239	61	211	2.1%	1.51 [1.02, 2.25]	
Barroso 2003	116	491	129	509	2.3%	0.91 [0.68, 1.22]	
Bochenski 2006	98	426	84	370	2.2%	1.02 [0.73, 1.42]	
C.B.leitao (1) 2008	310	830	58	149	2.2%	0.94 [0.65, 1.34]	
C.B.leitao (2) 2008	146	197	71	91	1.6%	0.81 [0.45, 1.45]	
Cauchi 2008	804	2783	1182	4326	2.6%	1.08 [0.97, 1.20]	-
Chen 2006	347	1862	163	844	2.5%	0.96 [0.78, 1.18]	-
Du 2002	71	217	14	54	1.5%	1.39 [0.71, 2.72]	
Ezzidi 2009	407	809	271	499	2.5%	0.85 [0.68, 1.07]	
Gouni-Berthold 2006	110	402	97	432	2.3%	1.30 [0.95, 1.78]	+
Grarup 2006	349	1386	1193	4770	2.6%	1.01 [0.88, 1.16]	+
Ou 2000	88	392	37	147	2.0%	0.86 [0.55, 1.34]	
Hamaguchi 2003	292	358	300	397	2.2%	1.43 [1.01, 2.03]	
Hsiao 2016	185	553	206	960	2.4%	1.84 [1.46, 2.33]	
Keshavarz 2006	180	907	171	874	2.4%	1.02 [0.81, 1.29]	
Kubaszek 2006	27	97	90	392	1.8%	1.29 [0.78, 2.14]	
Lu 2006	27	119	61	422	1.8%	1.74 [1.05, 2.89]	
Lyon (1) 2006	266	1002	284	1000	2.5%	0.86 [0.71, 1.05]	
Lyon (2) 2006	180	589	120	501	2.4%	1.40 [1.07, 1.83]	
Lyon (3) 2006	75	310	116	448	2.2%	0.91 [0.65, 1.28]	
Lyon (4) 2006	120	473	110	465	2.3%	1.10 [0.81, 1.48]	
Lyon (5) 2006	141	501	140	496	2.3%	1.00 [0.76, 1.31]	
Lyon (6) 2006	309	1216	351	1204	2.5%	0.83 [0.69, 0.99]	-
Meyre (1) 2005	129	465	162	732	2.4%	1.35 [1.03, 1.77]	
Meyre (2) 2005	222	747	143	548	2.4%	1.20 [0.94, 1.53]	
Meyre 2007	93	316	567	2005	2.4%	1.06 [0.81, 1.37]	+
Mohamad 2017	126	212	78	170	2.0%	1.73 [1.15, 2.60]	
Neamati 2017	57	180	103	310	2.1%	0.93 [0.63, 1.38]	
Paramasivam (1) 2016	22	40	19	41	1.1%	1.42 [0.59, 3.39]	
Paramasivam (2) 2016	27	40	23	40	1.0%	1.54 [0.62, 3.82]	
Paramasivam (3) 2016	23	40	24	40	1.1%	0.90 [0.37, 2.20]	
Pizzuti 1999	51	132	41	121	1.8%	1.23 [0.73, 2.05]	
Sec 2008	31	195	317	1750	2.1%	0.85 [0.57, 1.28]	
Sharafshah 2018	232	533	141	437	2.4%	1.62 [1.24, 2.11]	
Shi 2011	131	639	184	885	2.4%	0.98 [0.76, 1.26]	
Sumi 2017	144	160	71	271	1.6%	25.35 [14.15, 45.42]	
Tripathi 2013	69	190	64	210	2.0%	1.30 [0.86, 1.97]	
Vasudevan 2009	11	50	16	60	1.1%	0.78 [0.32, 1.87]	
Wang 2010	110	539	64	404	2.2%	1.36 [0.97, 1.91]	
Wang 2012	160	416	39	188	2.1%	2.39 [1.59, 3.58]	
Yako 2015	111	152	247	328	2.0%	0.89 [0.57, 1.37]	
Zhao 2011	416	1879	404	2014	2.6%	1.13 [0.97, 1.32]	-
Total (95% CI)		24979		33005	100.0%	1.25 [1.11, 1.41]	•
Total events	7638		8765				
Heterogeneity, Tau ² = 0.1		60.29 c		< 0.0000	01); F = 83	7%	0.02 0.1 1 10 50
Test for overall effect: Z =				2.0000			
							Case Control

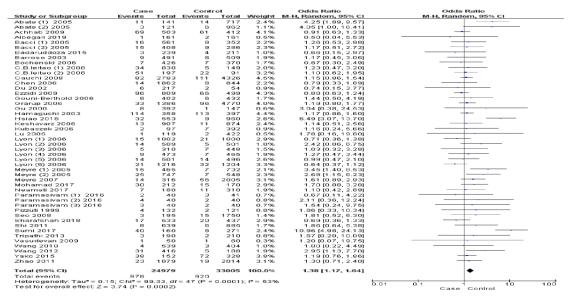
Fig. 4: Forest plot of type 2 diabetes and rs1044498 polymorphism for dominant model (KQ+QQ vs KK).

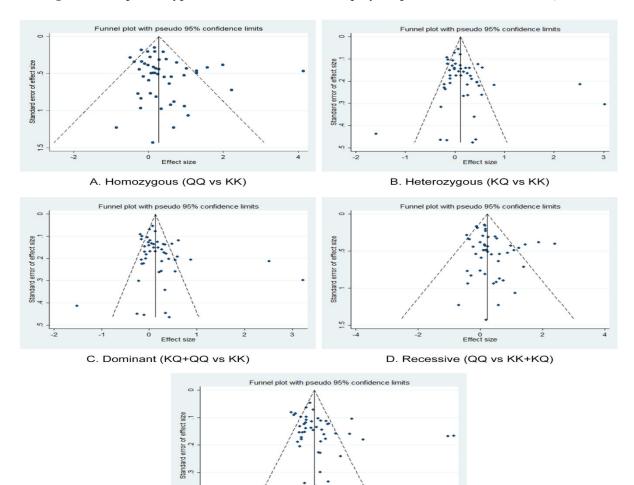
DISCUSSION:

The worldwide spread of Type 2 Diabetes Mellitus (T2DM) is a big cause for concern in terms of public health. Approximately 6.9 million adults in Bangladesh are living with diabetes. Deaths related to diabetes make up 3% of the total mortality rate in the country (Yasmin *et al.*, 2020). Probability of developing T2DMover time increases in those inflicted with insulin resistance (IR) (Bacci *et al.*, 2005). A connection between insulin resistance and the ENPP1 gene has been found by (Bacci *et al.*, 2005). Based on these findings, we choose this gene to include in this meta-analysis.

There are a total of 24979 cases representing type 2 diabetes patients and 33005 healthy people serving as controls in this study. These case-control were collected from 48 case-control studies that were published in 37 articles. According to the findings of the metaanalysis, the rs1044498 polymorphism in ENPP1 shows a noteworthy connection to type 2 diabetes. In each of the models, the rs1044498 polymorphism in ENPP1 was observed to be associated with an enhanced risk of evolving into type 2 diabetes. The odds ratio (OR) for the homozygous model was 1.53 (95% confidence interval = 1.23-1.90, P = 0.0001), while the odds ratio (OR) for the heterozygous model was 1.22 (95% confidence interval = 1.08-1.37, P = 0.001). The UniversePG I www.universepg.com odds ratio (OR) for the dominant model was 1.15 (95% confidence interval = 1.11-1.41), P = 0.0003; for the recessive model, the rs1044498 polymorphism was 1.38 (95% confidence interval = 1.17-1.64), P = 0.0002; and for the allelic model, the OR was 1.22 (95% confidence interval = 1.10-1.36), P = 0.0003 (P<0.05). According to the heterogeneity (I²) among the studies, we generated forest the plots to quantify the findings. These plots were produced using either a model with random effects or a fixed effect. If the I² value was lower than 50%, the fixed effect model was favored over the random effect model (DerSimonian & Laird, 1986; Higgins & Thompson, 2002; Mantel & Haenszel, 1959).

It was found that there was heterogeneity among the studies and resolved it using subgroup analysis. Except for the African population, all other models showed considerable heterogeneity. However, we recognized that a limited number of studies from African ethnicity were found from databases included in this metaanalysis (**Table 1**) and we expect that including more research from this region in future may produce a different conclusion. In every genetic model for Asian populations, the ENPP1 rs1044498 mutation was found to have a highly substantial link with type 2 diabetes. In the case of the Caucasian population, the association could be detected in the homozygous, dominant, recessive, and allelic model; not in the heterozygous model. This confirms what has been found in prior research (McAteer et al., 2008; Tang et al., 2014).

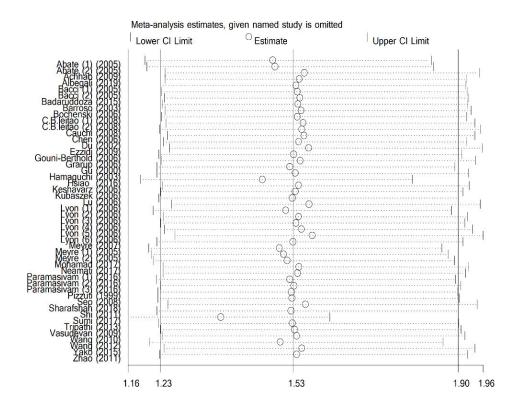



Fig. 5: Forest plot of type 2 diabetes and rs1044498 polymorphism for recessive model (QQ vs KK+KQ).

Three other meta-analysis studies on the same polymerphism issue were conducted in the distant past (Li, 2012; McAteer et al., 2008; Tang et al., 2014). However, there were severe limitations in those metaanalyses that we have addressed in ours. The metaanalysis study on this particular polymorphism published in 2008 was centered around only the European studies (McAteer et al., 2008). Another meta-analysis was conducted in 2012 with the Chinese studies on the polymorphism only (Li, 2012). Both of these studies were conducted only on a selective ethnicity; not on all the ethnic populations available. However, a metaanalysis study in 2014 considered studies on all available ethnic studies (Tang et al., 2014). They carried out a meta-analysis on 51 studies retrieved from 40 articles. But major drawbacks can be pointed out from that study. For instance, they undertook the metaanalysis with four genotypic models in view whereas in our study, we executed a meta-analysis for five genotypic models. Also, they used some insufficient study data, some of which contained no control data present at all. In our updated meta-analysis, we excluded insufficient study data so that our data are more acceptable and reliable despite being quantitatively compromised. Moreover, in our meta-analysis, the studies included are of the most recent years to allow our results to be more up-to-date and robust. Our research revealed symmetry in the funnel plot, indicating that there was no publishing bias. However, funnel plot alone is not an effective tool for assessing publication bias. We also conducted Begg Mazumdar and Egger tests and found no proof of publication bias across the analysis (P>0.05). Furthermore, sensitivity analysis demonstrated the consistency and reliability of our analysis. Because of the limited size of the sample, the connection between the ENPP1 rs1044498 variant with the African population was not established. This result may change if more genetic association studies with large sample data from African populations are incorporated, which was considered the first limitation of this meta-analysis.

However, the limitation mentioned may serve more as a direction through which the study can be further sophisticated. Including more subjects would strengthen the sample pool. To attain a more comprehensive comprehension of the connection between the ENPP1 gene and the threat of developing type 2 diabetes, it is suggested that further investigations be carried out to examine additional single nucleotide polymorphisms (SNPs) of this gene. These future studies would serve to more precisely elucidate the function of ENPP1 in the progress of type 2 diabetes and could shed light on the mechanisms by which specific SNPs of the genemay increase an individual's predisposition to developing the disease.

	Case		Cont			Odds Ratio	Odds Ratio
Study or Subgroup	Events		Events		Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Abate (1) 2005	66	282	201	1434	2.1%	1.87 [1.37, 2.56]	
Abate (2) 2005	78	242	118	1924	2.1%	7.28 [5.25, 10.10]	
Achhab 2009	378	1006	305	824	2.4%	1.02 [0.85, 1.24]	
Albegali 2019		322	33	322	1.1%	0.25 [0.12, 0.54]	
Bacci (1) 2005	184	1122	100	704	2.2%	1.18 [0.91, 1.54]	
Bacci (2) 2005	145	816	92	572	2.2%	1.13 [0.85, 1.50]	
Badaruddoza 2015	94	478	65	422	2.0%	1.34 (0.95, 1.90)	
Barroso 2003	125	982	137	1018	2.2%	0.94 [0.72, 1.22]	
Bochenski 2006	105	852	91	740	2.2%	1.00 [0.74, 1.35]	
C.B.leitao (1) 2008	344	1660	63	298	2.1%	0.98 [0.72, 1.32]	
C.B.leitao (2) 2008	197	394	93	182	2.0%	0.96 [0.67, 1.36]	
Cauchi 2008	886	5566	1293	8652	2.5%	1.08 (0.98, 1.18)	-
Chen 2006	361	3724	171	1688	2.4%	0.95 [0.79, 1.15]	
Du 2002	77	434	16	108	1.5%	1.24 [0.69, 2.23]	
Ezzidi 2009	503	1618	337	998	2.4%	0.88 [0.75, 1.05]	
Gouni-Berthold 2006	118	804	103	864	2.2%	1.27 [0.96, 1.69]	
Grarup 2006	382	2772	1289	9640	2.6%	1.02 [0.90, 1.16]	+
Gu 2000	96	784	38	294	1.9%	0.94 [0.63, 1.41]	
Hamaguchi 2003	406	716	413	794	2.4%	1.21 [0.99, 1.48]	
Hsiao 2016	217	1106	215	1920	2.4%	1.94 [1.58, 2.38]	
Keshavarz 2006	193	1814	182	1748	2.3%	1.02 [0.83, 1.27]	
Kubaszek 2006	29	194	97	784	1.8%	1.24 [0.80, 1.95]	
Lu 2006	28	238	63	844	1.7%	1.65 [1.03, 2.65]	
Lyon (1) 2006	270	2004	305	2000	2.4%	0.87 [0.73, 1.03]	
Lyon (2) 2006	194	1178	125	1002	2.3%	1.38 [1.09, 1.76]	
Lyon (3) 2006	80	620	123	896	2.1%	0.93 [0.69, 1.26]	
Lyon (4) 2006	129	946	117	930	2.2%	1.10 [0.84, 1.43]	
Lyon (5) 2006	155	1002	154	992	2.3%	1.00 [0.78, 1.27]	
Lyon (6) 2006	330	2432	383	2408	2.5%	0.83 [0.71, 0.97]	
Meyre (1) 2005	144	930	169	1464	2.3%	1,40 [1,11, 1,78]	
Meyre (2) 2005	247	1494	150	1096	2.3%	1.25 [1.00, 1.56]	
Meyre 2007	107	632	623	4010	2.3%	1.11 [0.88, 1.39]	
Mohamad 2017	156	424	93	340	2.1%	1.55 [1.13, 2.11]	
Neamati 2017	64	360	114	620	2.1%	0.96 [0.68, 1.35]	
Paramasiyam (1) 2016	24	80	22	82	1.3%	1.17 [0.59, 2.32]	
Paramasivam (1) 2016	31	80	25	80	1.3%	1.39 [0.72, 2.67]	
Paramasiyam (3) 2016	26	80	25	80	1.3%	1.00 [0.52, 1.94]	
Pizzuti 1999	55	264	43	242	1.8%	1.22 [0.78, 1.90]	
Sec 2008	34	390	332	3500	2.0%	0.91 [0.63, 1.32]	
Sharafshah 2018	249	1066	161	874	2.3%	1.35 [1.08, 1.69]	
Shi 2011	139	1278	190	1770	2.3%	1.01 [0.80, 1.28]	
Sumi 2017	184	320	79	542	2.1%	7.93 [5.73, 10.98]	
Tripathi 2013	72	380	66	420	2.0%	1.25 [0.87, 1.81]	
Vasudevan 2009	12	100	17	120	1.1%	0.83 [0.37, 1.82]	
Wang 2010	114	1078	67	808	2.1%	1.31 [0.96, 1.79]	
Wang 2012	191	832	44	376	2.0%	2.25 [1.58, 3.20]	
Yako 2015	149	304	319	656	2.2%		
Zhao 2015	439	3758	423	4028		1.02 [0.77, 1.33]	L
Znao zorn	439	3758	423	4028	2.5%	1.13 [0.98, 1.30]	
Total (95% CI)		49958		66010	100.0%	1.22 [1.10, 1.36]	◆
Total events	8616		9685				,
Heterogeneity: Tau ^a = 0.1		98.71. d		< 0.00nn)1); F = 88	1%	
Test for overall effect: $Z = 3$							
	· · ·	,					Case Control


Fig. 6: Forest plot of type 2 diabetes and rs1044498 polymorphism for allelic model (Q vs K).

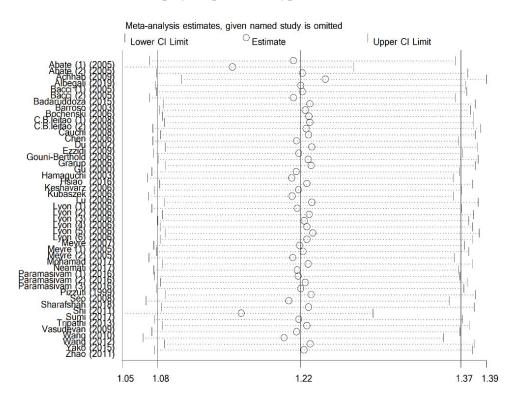
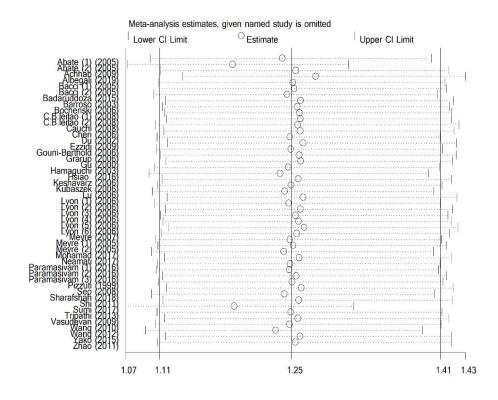
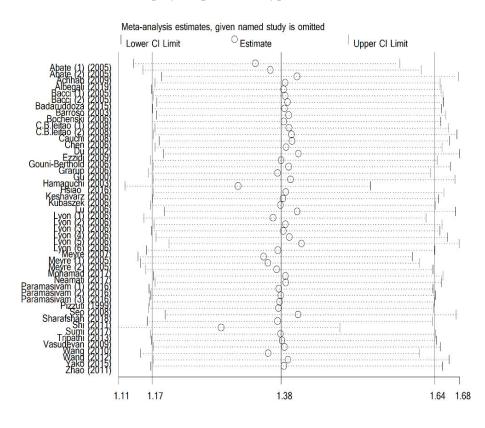

Effect size E.Allelic (Q vs K)

Fig. 7: Examination of publication bias using funnel plots.


Ó


Fig. 8: Sensitivity analysis plot for the Homozygous model (QQ vs. KK) of the association between the rs1044498 polymorphism and type 2 diabetes.

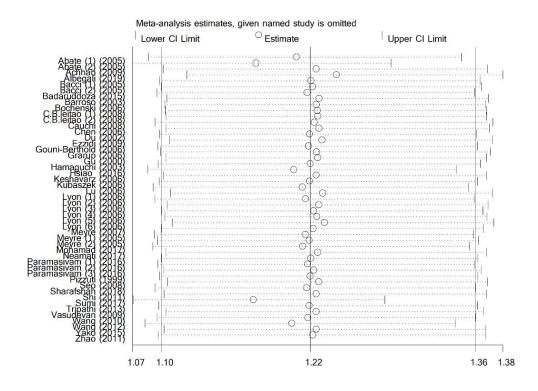

Fig. 9: Sensitivity analysis plot for the Heterozygous model (KQ vs. KK) of the association between the rs1044498 polymorphism and type 2 diabetes.

Fig. 10: Sensitivity analysis plot for the Dominant model (KQ+QQ vs. KK) of the association between the rs1044498 polymorphism and type 2 diabetes.

Fig. 11: Sensitivity analysis plot for the Recessive model (QQ vs. KK+KQ) of the association between the rs1044498 polymorphism and type 2 diabetes.

Fig. 12: Sensitivity analysis plot for the Allelic model (Q vs. K) of the association between the rs1044498 polymorphism and type 2 diabetes.

CONCLUSION:

This meta-analysis report supports the connection between the ENPP1 rs1044498 polymorphism and Type 2 diabetes, especially in Caucasian and Asian populations. The significance of the ENPP1 gene has been proposed in the initiation of Type 2 diabetes. To completely comprehend the mechanism by which this gene contributes to the onset of T2DM and to identify potential therapeutic targets, more rigorous research into the avenue is necessary. Overall, the data could help create strategies to prevent or treat T2DM in people with this genetic variant. To verify and understand this preliminary finding in the Caucasian and Asian populations, large-scale prospective studies may be required.

ACKNOWLEDGEMENT:

The authors thank to the Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University for providing the opportunity to conduct the research.

CONFLICTS OF INTEREST:

The authors declare that there is no conflict of interest.

REFERENCES:

 Abate, N., Chandalia, M., & Mohan, V. (2005). ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. *Diabetes*, 54(4), 1207-1213.

https://doi.org/10.2337/diabetes.54.4.1207

- Albegali, A. A., Shahzad, M., & Rashid, M. (2019). Association of genetic polymorphism of PC-1 gene (rs1044498 Lys121Gln) with insulin-resistant type 2 diabetes mellitus in Punjabi Population of Pakistan. *Molecular Genetics & Genomic Medicine*, 7(8), e775.
- Atlas, I. D. Diabetes around the world in (2021). Retrieved from <u>https://diabetesatlas.org/</u>
- Bacci, S., Ludovico, O., & Trischitta, V. (2005). The K121Q polymorphism of the ENPP1/PC-1 gene is associated with insulin resistance/atherogenic phenotypes, including earlier onset of type 2 diabetes and myocardial infarction. *Diabetes*, 54(10), 3021-3025.

https://doi.org/10.2337/diabetes.54.10.3021

5) Badaruddoza, B., Barna, B., & Bhanwer, A. (2015). A case-control association study of K121Q (rs 1044498) and G/T (rs 1225572) vari-

ants in ENPP1 and TCF7L2 genes with type 2 diabetes mellitus in north Indian Punjabi population. *Inter J. of Diabetes in Developing Countries*, **35**, 546-553.

- 6) Barna, B., Kaur, M., & Bhanwer, A. (2018). A multifactor dimensionality reduction model of gene polymorphisms and an environmental interaction analysis in type 2 diabetes mellitus study among Punjabi, a North India population. *Meta Gene*, 16, 39-49.
- Barroso, I., Luan, J., & Wareham, N. J. (2003). Candidate gene association study in type 2 diabetes indicates a role for genes involved in betacell function as well as insulin action. *PLoS Biology*, 1(1), E20.

https://doi.org/10.1371/journal.pbio.0000020

- 8) Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. *Biometrics*, 1088-1101.
- Bhatti, J. S., Bhatti, G. K., & Tewari, R. (2010). ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes in North Indians. *Molecular and Cellular Biochemistry*, 345(1-2), 249-257.

https://doi.org/10.1007/s11010-010-0579-2

- Bochenski, J., Placha, G., & Krolewski, A. S. (2006). New polymorphism of ENPP1 (PC-1) is associated with increased risk of type 2 diabetes among obese individuals. *Diabetes*, 55(9), 2626-2630.
- Cauchi, S., Froguel, P., & Meyre, D. (2008). The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. *BMC Medical Genetics*, 9, 45. <u>https://doi.org/10.1186/1471-2350-9-45</u>
- 12) Chen, M. P., Chung, F. M., & Lee, Y. J. (2006). ENPP1 K121Q polymorphism is not related to type 2 diabetes mellitus, features of metabolic syndrome, and diabetic cardiovascular complications in a Chinese population. *The Review of Diabetic Studies : RDS*, **3**(1), 21-30. https://doi.org/10.1900/RDS.2006.3.21
- 13) Costanzo, B. V., Trischitta, V., & Frittitta, L. (2001). The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling

more effectively than the common K allele variant (LYS121). *Diabetes*, **50**(4), 831-836. https://doi.org/10.2337/diabetes.50.4.831

- 14) Darishiani, P. (2016). Single nucleotide polymorphism of pparγ, enpp1 and capn-10 genes in type 2 diabetes mellitus patients with and without coronary artery disease in a Malaysian tertiary hospital / Darishiani Paramasivam. University of Malaya.
- 15) Defronzo R. A. (2009). Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. *Diabetes*, **58**(4), 773-795. https://doi.org/10.2337/db09-9028
- 16) DeFronzo, R. A., Ferrannini, E., & Weiss, R. (2015). Type 2 diabetes mellitus. *Nature reviews. Disease Primers*, 1, 15019. https://doi.org/10.1038/nrdp.2015.19
- 17) DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. *Controlled Clinical Trials*, 7(3), 177-188. https://doi.org/10.1016/0197-2456(86)90046-2
- Du XH, X. Y., Zhu YL. (2002). Effect of PC-1 gene polymorphism on insulin resistance in type 2 diabetes patients. *J. of New Medicine*, **12**, 23-24.
- 19) Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ (Clinical research ed.*), **315**(7109), 629-634. https://doi.org/10.1136/bmj.315.7109.629
- 20) El Achhab, Y., Meyre, D., & Chikri, M. (2009). Association of the ENPP1 K121Q polymorphism with type 2 diabetes and obesity in the Moroccan population. *Diabetes & Metabolism*, **35**(1), 37-42. https://doi.org/10.1016/j.diabet.2008.06.005
- 21) Ezzidi, I., Mtiraoui, N., & Vaxillaire, M. (2009). Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a casecontrol study. *BMC Medical Genetics*, **10**, 33. <u>https://doi.org/10.1186/1471-2350-10-33</u>
- 22) Gohari-Lasaki, S., Sharafshah, A., & Keshavarz, P. (2020). Single locus and haplotype association of ENPP1 gene variants with the development of retinopathy among type 2 diabetic patients. *International Ophthalmology*, **40**(3), 639-647. https://doi.org/10.1007/s10792-019-01224-3

- 23) Golbon, P., Esmaeilzadeh, A., & Mahmazi, S. (2018). Association of ENPP1 (K121Q rs 1044498) and TCF7L2 (C/T rs7903146) gene polymorphisms with Type2 diabetes in Zanjan population (northwest, Iran). J. of Advances in Medical and Biomedical Research, 26(118), 9-14.
- 24) Gouni-Berthold, I., Giannakidou, E., & Krone, W. (2006). The K121Q polymorphism of the plasma cell glycoprotein-1 gene is not associated with diabetes mellitus type 2 in German Caucasians. *Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et metabolisme*, **38**(8), 524-529. https://doi.org/10.1055/s-2006-949524
- 25) Grarup, N., Urhammer, S. A., & Pedersen, O. (2006). Studies of the relationship between the ENPP1 K121Q polymorphism and type 2 diabetes, insulin resistance and obesity in 7,333 Danish white subjects. *Diabetologia*, **49**(9), 2097 -2104. https://doi.org/10.1007/s00125-006-0353-x
- 26) Gu, H. F., Almgren, P., & Groop, L. C. (2000). Association between the human glycoprotein PC-1 gene and elevated glucose and insulin levels in a paired-sibling analysis. *Diabetes*, 49(9), 1601-1603.

https://doi.org/10.2337/diabetes.49.9.1601

- 27) Habib F. (2022). Investigation of the association of periodontal diseases and diabetes. *Eur. J. Med. Health Sci.*, 4(6), 184-190. https://doi.org/10.34104/ejmhs.022.01840190
- 28) Hamaguchi, K., Terao, H., & Sakata, T. (2004). The PC-1 Q121 allele is exceptionally prevalent in the Dominican Republic and is associated with type 2 diabetes. *The J. of Clinical Endocrinology and Metabolism*, **89**(3), 1359-1364. <u>https://doi.org/10.1210/jc.2003-031387</u>
- 29) Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine*, **21**(11), 1539-1558. https://doi.org/10.1002/sim.1186
- 30) Hsiao, T. J., & Lin, E. (2016). The ENPP1 K121Q polymorphism is associated with type 2 diabetes and related metabolic phenotypes in a Taiwanese population. *Molecular and Cellular Endocrinology*, 433, 20-25. https://doi.org/10.1016/j.mce.2016.05.020

31) Keshavarz, P., Inoue, H., & Itakura, M. (2006). No evidence for association of the ENPP1 (PC-1) K121Q variant with risk of type 2 diabetes in a Japanese population. *J. of Human Genetics*, 51(6), 559-566.

https://doi.org/10.1007/s10038-006-0399-0

- 32) Kubaszek, A., Markkanen, A., & Laakso, M. (2004). The association of the K121Q polymorphism of the plasma cell glycoprotein-1 gene with type 2 diabetes and hypertension depends on size at birth. *The J. of Clinical Endocrinology and Metabolism*, **89**(5), 2044-2047. https://doi.org/10.1210/jc.2003-031350
- 33) Kumakura, S., Maddux, B. A., & Sung, C. K. (1998). Overexpression of membrane glycoprotein PC-1 can influence insulin action at a post-receptor site. *J. of Cellular Biochemistry*, 68(3), 366-377. https://doi.org/10.1002/(sici)1097-4644(19980

301)68:3<366::aid-jcb7>3.0.co;2-s

- 34) L Tuck, M., & B Corry, D. (2010). Prevalence of obesity, hypertension, diabetes, and metabolic syndrome and its cardiovascular complications. *Current Hypertension Reviews*, 6(2), 73-82.
- 35) Leitão, C. B., Nabinger, G. B., & Canani, L. H. (2008). The role of K121Q ENPP1 polymorphism in diabetes mellitus and its complications. *Brazilian J. of Medical and Biological Research*, **41**(3), 229-234.

https://doi.org/10.1590/s0100-879x2006005000202

36) Li Y. Y. (2012). ENPP1 K121Q polymorphism and type 2 diabetes mellitus in the Chinese population: a meta-analysis including 11,855 subjects. *Metabolism: Clinical and Experi-mental*, 61(5), 625-633.

https://doi.org/10.1016/j.metabol.2011.10.002

- 37) Lu, L. (2006). Relationships between the K121Q polymorphism of the PC-1 gene and obesity and type 2 diabetes. *Dalian: Dalian Medical University Press (In Chinese)*.
- 38) Lyon, H. N., Florez, J. C., & Hirschhorn, J. N. (2006). Common variants in the ENPP1 gene are not reproducibly associated with diabetes or obesity. *Diabetes*, 55(11), 3180-3184. https://doi.org/10.2337/db06-0407
- 39) Maddux, B. A., & Goldfine, I. D. (2000). Membrane glycoprotein PC-1 inhibition of insulin

receptor function occurs via direct interaction with the receptor alpha-subunit. *Diabetes*, **49**(1), 13-19. <u>https://doi.org/10.2337/diabetes.49.1.13</u>

- 40) MANTEL, N., & HAENSZEL, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J. of the National Cancer Institute, 22(4), 719-748.
- 41) Maraschin, J. d. F. (2013). Classification of diabetes. *Diabetes: An old disease, a new insight,* 12-19.
- 42) Marchenko, I. V., Dubovyk, Y. I., & Harbuzova, Y. A. (2018). The analysis of association between ENPP1 K121Q polymorphism and risk factors of type 2 diabetes mellitus in ukrainian population. *Wiadomosci Lekarskie (Warsaw, Poland: 1960)*, **71**(4), 815-820.
- 43) McAteer, J. B., Prudente, S., & ENPP1 Consortium (2008). The ENPP1 K121Q polymorphism is associated with type 2 diabetes in European populations: evidence from an updated meta-analysis in 42,042 subjects. *Diabetes*, 57(4), 1125-1130. <u>https://doi.org/10.2337/db07-1336</u>
- 44) Menzaghi, C., Di Paola, R., & Trischitta, V. (2003). Insulin modulates PC-1 processing and recruitment in cultured human cells. *American J. of Physiology. Endocrinology and Metabolism*, 284(3), E514-E520.

https://doi.org/10.1152/ajpendo.00503.2001

- 45) Meyre, D., Bouatia-Naji, N., & Froguel, P. (2005). Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. *Nature Genetics*, **37**(8), 863-867. https://doi.org/10.1038/ng1604
- 46) Meyre, D., Bouatia-Naji, N., & Froguel, P. (2007). ENPP1 K121Q polymorphism and obesity, hyperglycaemia and type 2 diabetes in the prospective DESIR Study. *Diabetologia*, 50(10), 2090-2096.

https://doi.org/10.1007/s00125-007-0787-9

- 47) Mohamad, M. I., El Din Hemimi, N. S., & Abd Elwahab, M. A. (2018). K121Q variant in ENPP1 gene is associated with T2DM in the Egyptian population. *International Journal of Diabetes in Developing Countries*, **38**, 391-396.
- 48) Mtiraoui, N., Turki, A., & Almawi, W. Y. (2012). Contribution of common variants of

ENPP1, IGF2BP2, KCNJ11, MLXIPL, PPARγ, SLC30A8 and TCF7L2 to the risk of type 2 diabetes in Lebanese and Tunisian Arabs. *Diabetes & Metabolism*, **38**(5), 444-449.

- 49) Neamati, N., Hosseini, S. R., & Parsian, H. (2017). The ENPP1 K121Q polymorphism modulates developing of bone disorders in type 2 diabetes: A cross sectional study. *Gene*, 637, 100-107.
- 50) Pizzuti, A., Frittitta, L., & Trischitta, V. (1999).
 A polymorphism (K121Q) of the human gly-coprotein PC-1 gene coding region is strongly associated with insulin resistance. *Diabetes*, 48(9), 1881-1884.

https://doi.org/10.2337/diabetes.48.9.1881

51) Rahman, M. S., Hossain, K. S., & Pang, M. G. (2021). Role of Insulin in Health and Disease: An Update. *Inter J. of Molecular Sciences*, 22(12), 6403.

https://doi.org/10.3390/ijms22126403

- 52) Saberi, H., Mohammadtaghvaei, N., & Meshkani, R. (2011). The ENPP1 K121Q polymorphism is not associated with type 2 diabetes and related metabolic traits in an Iranian population. *Molecular and Cellular Biochemistry*, **350**, 113-118.
- 53) Seo, H. J., Kim, S. G., & Kwon, O. J. (2008). The K121Q polymorphism in ENPP1 (PC-1) is not associated with type 2 diabetes or obesity in Korean male workers. J. of Korean Medical Science, 23(3), 459-464.
- 54) Sharafshah, A., Keshavarz, P., & Farhadian, N. (2018). Association and in silico studies of ENPP1 gene variants with type 2 diabetes mellitus in a Northern Iranian population. *Gene*, 675, 225-232.
- 55) Shi, X., Wang, L., & Yang, Z. (2011). The ENPP1 K121Q polymorphism is not associated with type 2 diabetes in northern Chinese. *Acta Diabetologica*, **48**, 303-310.
- 56) Sumi, S., Ramachandran, S., & Kartha, C. C. (2017). ENPP1 121Q functional variant enhances susceptibility to coronary artery disease in South Indian patients with type 2 diabetes mellitus. *Molecular and Cellular Biochemistry*, 435, 67-72.

- 57) Tang, S. T., Shen, X. R., & Wang, Y. (2014). Association of the ENPP1 K121Q polymorphism with susceptibility to type 2 diabetes in different populations: evidence based on 40 studies. *Endocrine Journal*, **61**(11), 1093-1103.
- 58) Tripathi, A. K., Shukla, S., & Parihar, S. S. (2013). Obesity and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) polymorphism and their association with pathophysiology diabetes type 2 in Central Indian population. *J Diabetes Endocrinol*, 4(2), 19-26.
- 59) Vasudevan, R., Patimah, I., Aisyah, A., & Mimi, S. M. (2009). No association of TCF7L2 and ENPP1 gene polymorphisms in Malaysian type 2 diabetes mellitus with or without hypertension. *Research Journal of Biological Sciences*, 4(6), 703-709.
- 60) Wang, C. H., Ke, W. S., & Lin, E. (2012). Evaluation of the ENPP1 and PLIN single nucleotide polymorphisms with type 2 diabetes in a Taiwanese population: evidence for replication and gene-gene interaction. *Journal of Investigative Medicine*, **60**(8), 1169-1173.
- 61) Wang, M., Peng, C., Qu, Y. L., & Huang, Q. Y. (2010). Association and meta-analysis of ENPP1 K121Q with type 2 diabetes in Han Chinese. *Yi Chuan= Hereditas*, **32**(8), 808-816.

- 62) Weedon, M. N., Shields, B., & Frayling, T. M. (2006). No evidence of association of ENPP1 variants with type 2 diabetes or obesity in a study of 8,089 UK Caucasians. *Diabetes*, 55(11), 3175-3179.
- 63) Willer, C. J., Bonnycastle, L. L., & Boehnke, M. (2007). Screening of 134 single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes replicates association with 12 SNPs in nine genes. *Diabetes*, 56(1), 256-264.
- 64) Yako, Y. Y., Madubedube, J. H., & Matsha, T. E. (2015). Contribution of ENPP1, TCF7L2, and FTO polymorphisms to type 2 diabetes in mixed ancestry ethnic population of South Africa. *African Health Sciences*, 15(4), 1149-1160.
- 65) Yasmin, F., Ali, L., & Souares, A. (2020). Understanding patients' experience living with diabetes type 2 and effective disease management: a qualitative study following a mobile health intervention in Bangladesh. *BMC Health Services Research*, **20**, 1-13.
- 66) Zhao, T., Liu, Z., & Xu, H. (2011). The ENPP1 K121Q polymorphism is not associated with type 2 diabetes or obesity in the Chinese Han population. *Journal of Human Genetics*, **56**(1), 12-16.

Citation: Akter F, Rahman I, Supti DA, Kader MA, Munim MA, Tarin RJ, Afroz S, Tonmoy MIQ, Alam MR, and Hossain MA. (2024). Investigating the impact of enpp1 gene's k121q (rs1044498) polymorphism in type 2 diabetes via an updated meta-analysis. *Am. J. Pure Appl. Sci.*, **6**(1), 1-17. https://doi.org/10.34104/ajpab.024.01017